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An Analysis of the Efficiency of Convergence of Different Methods of
Structure Determination. I. The Methods of Least Squares and Steepest Descents:
Centrosymmetric Case.

By M. M. QUrasHI*
Physics Department, College of Technology, Manchester 1, England

(Received 25 March 1952)

A theoretical derivation of the ‘efficiency of convergence’ of the methods of least squares and
steepest descents is given for large departures of the assumed approximation from the correct
structure. The effect of incorrect signs is considered in detail and a mathematical expression is
obtained for the efficiency of convergence, 7, for an n-dimensional summation. (The effect of
overlapping atoms and of unobservably weak reflexions is also discussed.) It is shown that % can be
expressed as a function of u = 27nd/duy, where 4 is the root-mean-square error per atomic co-
ordinate. The characteristic behaviour of # under various conditions is discussed, and approximate
expressions are obtained for the radius of rapid convergence, within which it is possible to speed
up the convergence by using the theoretical value of 7. Curves to facilitate this are drawn, and a

numerical example of their application is given.

1. Introduction

The methods of Fourier synthesis, least squares,
steepest descents, and other allied techniques, as used
in crystal-structure analysis, all depend essentially on
the principle of successive approximations. Thus the
corrections (to the assumed atomic parameters) fur-
nished by one application of any one of these methods
are in general less than the actual corrections required,
and we may define the efficiency, 7, (of a particular
method) for a parameter, u;, as

where
du;, = actual correction required,

and

duj, = correction obtained from one refinement.

An expression for 7 for the modified method of
steepest descents has been derived elsewhere (Qurashi
& Vand, 1953) on the assumption that the observed
structure-factors, F,, are known completely, i.e. both
in magnitude and relative phase. A little consideration
shows that, under these conditions, the efficiency of
the Fourier-synthesis method is unity (provided there
is no overlap), while for other methods it is less than
unity. In actual practice, only |F,| is known ex-
perimentally, while the phases have to be obtained
from the assumed approximation, and may be in error
to a considerable extent. The efficiency, nr.g, for the
Fourier-synthesis method now also falls below unity,
as is shown by the necessity of using successive
approximations to obtain the correct structure.

If the value of 5 appropriate to a particular para-
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meter can be calculated for the method being used,
it should be possible to obtain the actual correction
from equation (la) as

dujy = Ougen(u;) . (15)

One application of the method of refinement used gives
duj,, and division of this by 7 should give us the final
correction, which would otherwise be obtained after
a series of successive refinements. Thus, in addition to
throwing light on the mechanism of the refinement and
its convergence, the evaluation of % for different
methods of structure refinement is of considerable
practical importance.

The purpose of the following analysis is to derive and
evaluate expressions for # for the methods of Fourier .
synthesis and modified steepest-descents, the ex-
pression obtained for the latter being valid also for
refinement by least squares. It is convenient to con-
sider first the method of steepest descents; the
analysis for the Fourier-synthesis method is a con-
siderable elaboration of that used here, and will be
discussed separately. So far the results for centro-
symmetrical structures only have been obtained in a
complete form; it is hoped to publish those for the
acentric case soon.

2. List of contractions

In order to simplify the writing of the equations
involved, we use the following contractions, some of
which are standard:

F, = observed value of F.

F, = calculated value of F.
(F is in general a complex quantity to
include phase and magnitude.)
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2=22§.

WOk
v = 2n{(hja)r+(k[b)y+(!c)z}.
v; = 27{(k]a)z;+ (k[b)y;+ (Yc)z;}.
Tje = (%;)calculated OF (%;)assumed -
Ljo = (xj)observed or (xj)actual-
;. = value of z; given by one application of the
method of refinement under discussion.

0xj, = (02), = Tjo—Tjc.
axjc = (6xj)c = Ljoc— Ljc+
Ovj, = 27{(hja)dx;,+ (k[b)0Yjo+ (V/c)dzj} -
0v;, = 2nu{(hfa)ox;c+ (k[D)Oyje+(Uc) Ozc} -

3. Derivation of expression for 9
Define a quantity, F,, as follows:
ol = [F,

i.e. F,, has the phase of F, and the magnitude of F,.
Thus F, issthe quantity that replaces F, in a practical
Fourier synthesis

arg F,, = arg ., (2a)

0oy = %,}% F, exp [2mi{(hfa)e+ /o)y + (o))

Also, in the practical application of the methods of
steepest descents and least squares, we must minimize
the residual

R = 3 WX(|F,|—|F.|)?
Rkl

instead of
R =3 WF,—F)?,
hil
where W represents the weight given to (|F,|—|F,|)
for any particular reflexion. This form of the residual
will lead to the modified steepest-descents formula
with optimum convergence (cf. Qurashi, 1949)

b = = (2 w11 ) (2 we (B,

ki ; Rkl oy

(3a)
We have from equations (2a)
]Focl/Foc = IFcl/Fc s

and, considering only the centro-symmetrical case, for
which F is always real, formula (3a) transforms into

(20)

6“}'6 =& =
|Foo| 0F,| 8|Fcl)) /< (6IFCI>2>
2| p oo ld 1 p e we (=<
(ﬁw ( * F, ou; IFd ou; % ou;
oF, ( aFc>2)
_ 2 _F 2{ <)), 3b
(W@ c)aui)/th( ; (30)

Thus the effect of introducing [F| in place of F in
the residual is equivalent to replacing F, by F, in
the final expression for du;. Now,
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Foc—'Fc = (Fo—Fc)“}'(FocLFo) ) (4a)
and
Fo—F,=0, if arg F,=arg F,,
or
= —2F,, if arg¥F,+ argF,,

since the condition arg F, # arg F', within F real
implies that the sign of ¥, (and therefore of F,) is
opposite to that of F,, i.e. the assumed approximation
gives the wrong sign for F. Only for such reflexions
is there a contribution from the term (¥,—F,), which
is then equal to

—2F, = -2x2 X f;cos v, ,

7=1

(48)

where f; is a fraction of the scattering factor of the
corresponding atom determined by the degeneracy in
multiplicity of the atomic position.

Putting

f=7§1f,»/n, Ny =flf, Ny~ 1)

we have

F = 2f 3N;cosv; (4¢)
)

and, on putting v;, = v;,+0vj,, (4b) becomes
—2F, = —4f X N, (cos vj, cos §vj,—sin v;,sin dv;,) . (4d)
i

Also
F,—F, = 2f 3 N, (cos vj,—cos v;)
i

= —2f 3 N2 sin? }dv;, cos v;,+-sin v, sin dv;,) . (4de)
i

Multiplying (F,—F.) by

W2 oF, aeny
Ea_xz = —2W fN,-;sm Vg s

using equations (4a), (4d) and (4e), and summing over
h, k, 1, we obtain

1o oF,
— F, —F
57 S WFuF) 38
= 4 3 W2ft 3 N;N,(k/a) sin v,(2 sin? § dv;, cos v;
prx i

je

+sin dv;, sin v;,)

+83 W2f2 X N;N,(k/a) sin v;, (cos dv;, cos v,
hil i

—sin dv;, sin v;,)

4
where 3 denotes a summation over those reflexions
hkl

for which F, and F, have opposite signs. We have,
with a fairly large number of terms in the summation
(symmetrical over positive and negative hkl), and, for
orthogonal axes,

sin v, sin v;; = 0 for 1%7,

cos v sinv,, = 0 for all 4,7,
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whence it follows that

oF
2 _ il 4
o W(Foe—F,) =

1

= 4 sin? v;, 3 W2f2N%(h/a) sin dv,,
Rkl -

— 8sinfo, > W2fEN2(h/a) sin dvy, .
o

(Oblique axes can be treated as in §7, Qurashi &
Vand, 1953.) A little thought shows that no correlation
exists between the value of sin? v;, and the agreement,
or otherwise of the signs of F, and F, for the corres-
ponding reflexions. (This is discussed in detail later in
Appendix 2.) It follows that the two averages for
sin® v;, have the same value, and therefore, using

fi=fN;,

L s wp, 1)
27 hkl

orF,
ox;

= 4 sin? v, (3 W*Z(h/a) sin dv,,
nkl

—2 3 W2f2(hja) sin v,,) . (5a)
hkl
Suppose that in a small range of &, k, I, a fraction
Bua of the total number of reflexions (in that range)
has F, and F, of opposite signs. Then (5a) gives

SWF,~F) L 45, 3 W28t 4B)
rkl ox; ril

(50)

where A8 takes account of statistical fluctuations. Its
effect is further discussed in Appendix 2.
Using the fact that

x 27 (hja) sin dv;, ,

2
= we (a—F°> = 4 3 W3 x 4n2(h?/a?) sin® v, ,
il

Rkl ox;
we obtain from equations (3b) and (5b)
6xic =
(Z WfH1~2Ba) 2r0(ha) sin 6v,,)[(Z WfF . 4n2(h?[a?)).
Bkl o
The efficiency of the steepest-descents formula for the
coordinate ; can now be written as

62.,:‘:

M50 (%) =5 == (}% Wi (1—2B )k sin dv,,)|
' (Z Wh@n(hja)dz,)), (6a)
hkl
> szf(l —2ﬂhk,)h sin dv,,
hkl
T 3 WY1 — 2Bk Cn(kja)ony) |
hkl

3 (1~ 2B0) W2
Rkl
SWHm
hkl

= Nr, p(2;) X Np(T;)
where
Nr,p(%;) = (hzkl: W1 —2Bua)h sin 6v,,) |
(hzu; Wfi(1 =284k 6vi,) ,  (6b)
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since replacement of 2n(h/a)dz;,, by dv;, does not
affect the result, and

Np(x;) = (2(1~2ﬂhk,)W2f£"k2)/(Z szizhz) - (6c)
kKl hkl

Let us suppose for a moment that the signs of all
the F,’s are correctly known; then B,,=0, and
therefore 7y = 1; also in this case %7, (= 75 be-
comes the efficiency of the modified steepest-descents
formula discussed elsewhere (Qurashi & Vand, 1953),
where the subscript ‘7" is used because 77, o is analogous
to the efficiency of the first term of a Taylor series
as an approximation to the series (curves for %, , in
Fig. 2). It can be shown (after Cochran, 1948) that
the structure obtained by ore Fourier synthesis in
the centro-symmetric case is the same as that to which
the steepest-descents method converges, if, instead of
F, we use F, as defined by the initially assumed
structure. This suggests that the quantity #y(z;) gives
at least approximately the efficiency (7ys) of the
Fourier synthesis method; this will be discussed
further in Part II of this paper, and the subscript ‘F”
has been used here for 7 because of this relationship.
It is interesting to note that 7y is independent of oz;,
ete., individually, and that (when B, # 0) 7, , differs
from the 7y, previously discussed in that the weight,
W, is now replaced by

WI = W(1_2ﬂhkl)1/2 .

Also we see from (6¢) that #p is in fact a specially-
weighted mean value of (1—28,,), averaged over the
reflexions used. In order to evaluate 7 it is necessary
to obtain an expression for 8.

- Before doing this, it is pertinent to remark that the
modified steepest-descents formulae (3) are identical
with the results obtained by the (linear) method of
least squares, when the small cross-product terms are
ignored (cf. Qurashi, 1949); also, the effect of the cross-
product terms can be taken into account by means of
an overlap coefficient, «y;, (cf. § 3, Qurashi & Vand,
1953), so that

Oxye = My % (nT(x’i)éxio'*'ig ogifilfinr(x)dx,) , ete., (6d)

where 7y is the same for all the atoms and 7, varies
only slightly from atom to atom (§5 below) and
is identical with the corresponding coefficient in the
appropriately weighted least-squares solution. It
follows that the least-squares solution will give the
values of

NN (@:)0%;, = Ns.p. 0%, ,
so that

NLs. = 1s.p. (6e)

and the formulae (6) and other formulae derived from
them later will also be valid for the method of least
squares (cf. also the discussion on page 581).
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4. Evaluation of Sz

We now derive an expression for f.
Equation (4c) gives

|F,|2 = 4f3( 2 N; eos vj,)?
i
= 4 cos®v;,f2 3 N; = 2f2 I N?Z,
i 7
and

[0F[® = (Fy—F)? = 4f2( 3 N, (cos v;,— oS ;,))?
7

= 4f%( X —N;x2 sin vj,, sin $0v;,)
7

= 374 sin? }0v,,.4f2N?sin? v,
i
= 4 sin? }0v,.2f2 I N7 .
7

(Vjm = 3(vjo+v;); sin® 3dv, = sin® §dv;, averaged over
all § and some hkl.)
Thus

VUOF®) [ Y(IF,?) = 2Y/(sin® 3dv,) = 3,
and is somewhat analogous to the customary ‘figure

of merit’ for a structure.
It can be seen in a general way that approximately

Bu = V(ISFR) [ Y(IF ) = ", (7a)
and therefore, for small u = }/((6v,)?),
Bri < u . (7b)

The constant of proportionality and the exact ex-
pression for f;, have to be derived from a con-
sideration of the statistical distribution of the F’s
and the errors (F,—F,). This is done in Appendix 1,
and the validity of the assumptions and approxima-
tions made in the analysis is discussed in Appendix 2.
In Fig. 8, By = Pfuu is graphed as a function of u.
Also,  is shown (in Appendix 2) to be equal to

2nA|dyy = (47[A.A)sin 0,
where

4% = (0x)® = (dy)* = (02)*.

5. Evaluation of g.p.

We can now calculate 74 ;. numerically as a function
of uy and U, the minimum and maximum values of u,

assuming that all reflexions between the corresponding
Bragg angles, 0, and @, are used. Using the results
of the analysis for 7, (Qurashi & Vand, 1953), we take
W2f2=d’, (v ~ n+2 for an n-dimensional summation).
We shall consider in detail the cases v—n = 2 (op-
timum value), and v—n = 1. The smaller value is
desirable for the later stages of refinement in order
to make full use of the high-angle reflexions. Since
filf = N; does not in general vary greatly in the
useful range of sin /4 (Harker & Kasper, 1948), we
replace f; by f in formulae (6) ; any significant variation

THE EFFICIENCY OF CONVERGENCE IN STRUCTURE DETERMINATION. I

of N; can be allowed for by varying the index, ».
(It will appear from the curves for 7y in Figs. 1(a)
and 1(b) that the effect of this variation is usually
unimportant.)

~ \‘}’77.,3

061 ——— =120
T o4
02 = nf_
=== —{'T’"?m
‘ 2 4 6 8
U=2 74/ due.

(@

U=2 ﬂA/dnln.
(b)
Fig. 1. Curves for 7, pNr and 7 ,, against U = 2nd/d ;

for a one-dimensional summation with (a) W2f2 = d2,
(6) Wf? = at.

(@) The one-dimensional case

Using the symbol 7™* to denote the value of # for
an n-dimensional summation with W2f2 = d”, we have,
on replacing the summation by an integration (valid
in most practical cases, e.g. the error in 74, is less
than 0-02 when A4/a = 0-1),

[ . ’ g
miip) = § (1=2Po~ =5 du / | (1-2Bgputdu,
where “ b (12a)
' = 2n(hja)bx] = (16x)/A)u ,
uO/U > (ko_%)/H ~ dmin./dmax. :*
and

124 g
n}a’(w,-)=§ (1—2ﬂa)u2"du/s w*du.  (12b)
tuo o

Putting u,/U = @, we obtain, after simplification, the
following series

* For exact equivalence of the summmations and the integrals,

r—2 H+4
'EDT_'T), UF:27! 2 a.

4
Uy~ 27 z (ho“'i"*‘x—‘f
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U U
1,2 _ 1__ —_—
np° =1 n(1+<1>)(1 24(1+¢2)+...),
(13)

U2(1—<1>)< U2 )
13 _ 1_2 —_ .
W=1 7 Tog 1/& 1 36(1+<JT>)+...

Curves for np with @ = 1/10 and 1/20 are drawn in
Fig. 1. It should be noted that the portion U < =«
is the most important, since with U = 7, the reliability
index, R = X||F,|—|F ||=Z|F,|, is of the order of
709% as against the limiting value of 839% (Luzzati,
1952). Also, it is shown below that the #-curves can
be used unambiguously only in the region #gp > 0-5
or U < }n approximately. Comparison of the #p-
curves with those for 75 4(fs=0; shown in Fig. 2)

Fig. 2. Comparative curves for Npor Mg and Ng.p in a typical
case with @ = 1/20. The curve labelled (ng.p), includes
allowance for the effect of unobserved reflections (§ 6).

indicates that #p is the dominant quantity in deter-
mining the curve for ug p (= %r.7y, ) especially when
U < z. This suggests that in calculating #y 4, it is
sufficient to put

|6z,] = Y((62)?) = 4.

(sin )/ now replaces (sin%’)/u’ in equation (12a),
and we get

—— o7 sinu v
7’]1T’:,ﬂ = g (l —Qﬂo)uz-" du/S (1 —2ﬂ0)u2'”du ~ 77#"’0
0 0

¢y u U

for U < }n. (12¢)

(Deviations of the actual |xz;|’s from A can be taken
account of sufficiently accurately by drawing the
curve for 7, from the following characteristics:
(1) nr,p(U) =~ ngp,o(U’') for small U’ where U'JU =
[0x,]/A4, (2) np,p(U) ~ nro(}U) for large U’, and
(3) the transition from (1) to (2) occurs at about
U = 2-5.) The first two terms in the power series for
7s.p. are identical with those in the corresponding
series (13) for 7p.

Curves for 7, ; and 755, are also shown in Fig. 1.
The rapid fall of 7y, for large U is remarkable;
although the primary radius of convergence R,
(defined as the value of uy = Ux®, for which 74,
first becomes zero (cf. Qurashi & Vand, 1953)) is not
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greatly affected, an important effect appears when
7g.p. is plotted against U, = U xngp = 2nd,/dmin., 4,
being V(e—f-), where ¢; is what would be obtained from
the steepest-descents formula (3b). The curves (cf.
Fig. 3) now give a double solution for #g p throughout

081
06 AN
N |- - —9=1/20 AN
049 o N
=1/10 SN
02 S
05 10 05 10 15

U=2 .rrA,/dm;n, U =24 /dein
(0) ®)

Fig. 3. Curves for #g,p, against U,= 2n/4;/dmin. for n-dimen-
sional summations with (a) W2f2 = dn+l, (b) W2f2 = dn+2;
the outer pair of curves is for » = 1 and the inner pair for
n = 3.

the usable range (u, < R,). In order to use the #-
curves to correct for low efficiency, it is necessary to

‘know which solution to use. In some cases we may

have other evidence, e.g. from an analysis of the
reliability factor (Luzzati, 1952), which indicates the
upper branch of the curve; a general criterion can be
obtained as follows:

Suppose we begin with an approximate structure
with known dxz; = §. The first refinement gives ¢, =
n(0)xJd; the second will give &, = n(d—g;) x (0—¢g).
If we plot 7n(d—e¢,;) against the ‘convergence ratio’

0 = &/e; = n(0—¢&y) x(0/e;—1) = (1/77(6)*1)77(6"‘81) »

it turns out that the curve will give the value of #gp,
uniquely, provided ¢ < 1; the region of multiple
solutions lies at ¢ > 1. (For large U, ¢ tends to a
limit greater than unity.) Such curves can be derived
from those already drawn, and are shown in Fig. 4.
When og=1 or ~ 1, it is safe to assume that
Ns.p. = (Ns.p.)p=1, and it will always be useful to
employ this value (~ 0-5) of % to speed up the con-
vergence in such cases, without any risk of over-
shooting the correct structure; this is equivalent to
doubling the shifts obtained from formula (36). As the

0-81

061
Y.
04 1---o=y20
021 {——@=v10

02 04 06 08 10
0=¢5,/¢

()

02 04 06 08 10
g=¢€,/¢,
(b)

Fig. 4. Curves for 7g.p, against the convergence ratio, p=g,/¢,
for n-dimensional summations with (a) W2f2 = dn+1, (b)

Wif? = dni2,
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correct structure is approached, the value of ¢ will
drop.significantly below unity, and we can then obtain
the correct value of 7gp, from the curves of Figs. 3
or 4; use of this value should theoretically give the
final structure in one step. However, when ¢; is
obtained from formula (3b), in deriving which cross-
product terms are ignored, the value of 75 5. is subject
to a statistical error of the order of }}/(n/N), where
n is the number of atoms involved and &V is the number
of reflexions used in the summation. This will leave us
with a small residual error to be removed by further
refinement. If, as in the least-squares method, the
cross-product terms are included, this error is reduced
to a negligibly small value. Finally, it should be men-
tioned that in practical applications it would be better
to use an average value of g, namely

2 = VEV(E) = (Aoe/(40), -

Since we cannot correct for the small efficiency in
the region of multiple solutions, it is important to
study its extent and to minimize it. When g =
(4.),/(4.), = 1, the mean of the values of U for the
two refinements used to determine g corresponds to
the maximum of U, (cf. Fig. 3), and we use this to
define a secondary radius of (rapid) convergence as

R2 = (uo)Uc=max. =dDx (U)Uc=max. .
Calculation gives the following approximate values
for R,:

v: 1 2 3 4 ... o
R,: ad(l—)2®) ad(1-V2P) 036 044 ...062

For v = 3, R, is seen to be independent of @ = u,/U,
the variation with v being

ny—2
2 — 5 v—-—l ’ (V = 3) .

Thus v = 3 is important as being the smallest index

that makes R, independent of @; further increase of »

will increase R, slowly, this increase being more than

offset by the rapidly increasing overlapping (cf. Fig.4,

Qurashi & Vand, 1953) between distant atoms.

(b) n-Dimensional summations
For a three-dimensional summation, we consider
integration over three variables, %, = 2n(h/a)4

uy = 2n(k/b)4, us = 2n(lfc)A, so that

u2 = (6v)? = ul4udtul.
Then

% () = S S S (1—28p)u"uldu,duoduy /
S S S wruidu, duydusg .

In order to integrate over a spherical annulus from
% = uy to w = U, we first consider a narrow annulus
of radius % and thickness du; we perform the integra-
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tion with respect to u, over this annulus and obtain,
after putting u,/u = sin w,

4 +u du
3”’ = - —v 2 et N
(;) S (1—2B)u ( S_uu1.2nu cos @ — ) du /

44 +u d,ul
S u™ S u3 . 277% cos du
cos @

g —u

= SU(I —2Bpyut~"du / S:’u“‘”du ,

which is precisely the expression (12b) for #}*(x;) with
y—2 in place of ».
Thus

n%v — ,'71, v—2
so that 17"’" curves with a given value of (v—n) are
identical; since 77 ; has only a small effect on 755 ,
the discussion of the one-dimensional case will apply
to n-dimensional summations on replacing (v—1) by
(v—n).

Next consider n%’%. Transforming the axes to make
the z-axis parallel to the resultant displacement d; of
the ith atom, and writing u, = (J;/4)u,, we have

npl) = { o

(14)

, and similarly #%* = np*,

2smu

(L —2B)ui — du,du,dug /

S S S (1 -2fp)uidu, dusdu,

([ 1) ]
Suo(l — 2B Ut~ ( Si:uﬁdul)du .

Ignoring the variation of J; as before, and taking its
r.am.s. value |/(6?) = /3.4, we get

. (§ S+u uisin /3.u, du1> i /

2, u? [/3@1,l u

U
Ny = Suo(l —28,)ut
S (1=2B5) us~du .
%

Curves for #%* are drawn in Fig. 5 as functions of
Uandof Uy = )3.U ; for |0, # }/34, the dependence
on U’ (now = (6,/4)U) is much the same as in one
dimension. Curves for 773”’ are shown in Fig. 3 along-
side the one-dimensional curves; the curves for #%%,
against o are too close to the corresponding one-
dimensional curves to be shown separately, and there-
fore mean curves (7sp. correct to within +0-010 for
n =1 to 3) are drawn in Fig. 4.

6. Effect of unobservably weak reflexions

When some of the reflexions are unobservably weak
and it is desired to include them (e.g. to obtain a more
representative value of the coordinates), the effect on
can be estimated as follows:
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From equation (4a), replacement of any F by zero
has half the effect of reversing its sign. If, therefore,

U
0 2 4 6

10
09
n 08
07

$=1/10

U,=v3.U
0 3
10— L 4 8
T S e el 5
(XX . V=
1 07— — —d= 1/20 ***** }}v=4
— 0=1/10

()

Fig. 5. Curves for 7 Npp 8 & function of (a) U, (b) y3U, for &
three-dimensional summatlon, the curves of Fig. 5(b) are
to be compared with the corresponding g CULves (Fig.
6(a), Qurashi & Vand, 1953).

there is a fraction By of such reflexions in a small
range of Brage angles, the effective value of fy be-

comes
(Bo)e = $B10+Bs »

where f; is By evaluated for the measured reflexions
only. Knowing f, By can be calculated and a corrected
n-curve can be obtained; » at U = 0 for such a curve
is given by

1=Bio = 1=(Z pua W21 | (3 WFR2)
Akl kL
A typical curve with By = 0-15 is shown in Fig. 2;

it is clear that the effect of f,4 is appreciable only
for small U.
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7. Application of the results

We consider the convergence of successive refinements
in a somewhat extreme three-dimensional case, and show
how the above analysis can be utilized to shorten the
work. We take @ =~ dmin/dmax. = 1/10, Initial U =
274 |din. = 8, (4 = J/(42), 4; =r.m.s. error per co-
ordinate in jth atom), and 4; = 4 for simplicity; so
that A/dpm = 1-273, and, with dmn = 3Awox =
0-355 A, this gives A = 0-45 A. The process of re-
finement is shown in Table 1; clearly we do not need
to go beyond the tenth refinement. For smaller initial
values of U, one can start from an intermediate column
of Table 1. The diminution in A per refinement is
seen to increase steadily from 0-04 A to 0-06 A and
then to drop rapidly to zero—this is often observed
in a series of Fourier syntheses.

Table 2 shows the convergence speeded up by
multiplying the calculated corrections by the factor
K (~2) when g~1, and by 1/ng, when ¢ < L.
(It is to be noted that when K > 1 we cannot obtain
o as defined; instead we use

V(Emam—l) =~ ((Ac)m/(Ac)m—l)I/K = (( Uc)m/(Uc)m—l)IIK ’

from which all the g,’s can be obtained since p, is
known directly.) It is seen that the number of refine-
ments required is approximately halved, allowing for
a possible fluctuation of 0-10 in the value of 7.
used in the last refinement.

Another possible application is to terminate a
Fourier series (or other refinement technique) at a
suitable upper limit of indices 8o as to obtain a large
value of 7. From Luzzati’s analysis (1952) of the
dependence of thé reliability index on sin /4 and on
A, it is easy to estimate the value of A. This can then
be used to fix the minimum d;;,; so that

2ndjd = U < 3z,

ie.

Table 1. Normal process of refinement of a typical structure

m=no. of refinement 1 2 3 4
Initial U=U; 8-00 7-36 666 5-88
Ns.p. 0-080 0-095 0-117 0-145
U.=U;. 13.p. 0-64 0-70 0-78 0-85
Final U=U;—U, 7-36 6-66 5-88 5-03
Final 4/dmin. 1-17 1-06 0-933 0-800
4 (A) 0-415 0375 0-332 0-284
.Qm—(Uc)m/(Uc)m-l 1-10 1-11 1-09

5 6 7 8 9 10 11
5-03 4-09 3-:08 2:04 1-06 0-314  0-028
0-186 0-247 0-337 0-481 0706 0-912  0-986
0-94 1-01 1-04 0-98 075 0-284 0-027¢
4-09 3-08 2-04 1-06 0-314 0028  0-0004
0-650 0-490 0-324 0168 0:050 0-004 —
0-231 0174 0115 0060 0-018  0-002 -
1-10 1-08 1-03 0-96 0-77 0-38 —

Table 2. The process of refinement of the same structure, speeded up with the aid of the theoretical n-curves

K = 25 K =20
m=no. of refinements 1 2 3 4 5 1 2 3 4 5 6
Cale. correction =4, 0-036 0-040 0-050 0-059 0-034 0-036 0-040 0-048 0-056 0-057 0-012
V(@m@m-1) — — 110 1-07 0-80 — — 109 108 1.01 0-50
om — 1-11 1-08 1-05 0-60 — 1-11 1-08 1-08 0:96 0-26
KxA4, — 0-100 0-125 0-148 (n=0-782) — 0080 0-096 0112 0-114 (n=0-920)
Final 4 (A) 0-415 0-315 0190 0042 040-005 0415 0-335 0-239 0-127 0-013 0+£0-002
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d>d44.

This ensures that # is of the order of 0-5 or more.
(Since Apax, ~ 0-5 A, it is always safe to take d > 2 A.)
A more rigorous discussion is given in Appendix 2(d).

8. Conclusion

The main results of the foregoirg analysis are sum-
marized below:

(1) When the effect of incorrect signs of the F’s is
included, the earlier results regarding the suitability
of the power law as a weighting function and the
optimum value of the index remain unchanged. For
W2f? = (d;;,), the optimum value for a n-dimensional
summation is ¥ = n+2.

(2) It is found that #;5 = 7s.p. = NFX7p,p Where
the dominant term, 7z, (due to the incorrect signs)
is the same for all #n with optimum », and (1—7r,4),
which represents the loss of efficiency caused by the
failure of the linear approximation necessary in the
least-squares and steepest-descents methods, is less
than about 0-25 even for large values of U.

(3) The convergence ratio ¢ of two successive re-
finements enables the #g,-curves to be used
practically; for o ~ 1, or p > 1, it is useful to multiply
all calculated corrections by a factor K (2-3); for
¢ < 1, the precise value of 1/55, can be obtained
from a curve and the corrections can be multiplied
by this to obtain rapid convergence. This process
halves the number of refinements required.

{(4) When the r.m.s. error in the coordinates can be
estimated, as by Luzzati’s analysis, the #-curves can
be used to limit the indices of the reflexions utilized
and thereby ensure a high value of 7.

(5) It is clear from general physical considerations,
and also from the analysis for overlap (Qurashi &
Vand, 1953), that the foregoing analysis is valid if
Y34 < % (mean interatomic distance) ~ 0-5-1-0 A.

(6) It appears that for small U, 55 5 (for the Fourier-
synthesis method) is approximately equal to #p, but

w
'l

Probability x 27
~N
Probability x 27,
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since the Fourier-synthesis and least-squares methods
correct their signs progressively at different values of
A4 or U, the 7yg-curves for large U cannot be de-
duced in any simple way from those for #»y. For
large U, %7 must be obtained by a direct process of
setting up the residual, R, as a function of 8, x;, y;, 2;,
and finding the values of the coordinates that make
it a minimum.

I am indebted to Dr H. Lipson for his interest and
to Dr I. G. Edmunds and Dr V. Vand for valuable
criticism. A large part of this work was made possible
by a grant from the Government of Pakistan.

APPENDIX 1

We have first to discuss Wilson’s asymptotic form of
statistical distribution of the F’s. Wilson (1949) has
shown that with » pairs of atoms in the centro-
symmetric unit cell, the distribution tends to the
normal Gaussian error-function as n - co. However,
because of the marked departure of the distribution
for one atom-pair (cf. Fig. 6(a)) from the Gaussian
curve, it is desirable to consider the shape of the
distribution curve for finite and small ». It is con-
venient to use the quantity

p=Flf =23 Ncosv;=Z g,
7 ]

where @; = 2N, cos v; is the corresponding function
for the jth atom-pair. If the jth atom is in a general
position, the values of v; for a small group of reflexions
will be randomly distributed, i.e.

» 77

P,(v) = Pj(v;, v;+dv;) = Kdv, <K = }Zfor { &av; = 1),

where Pj(v;, v;+dv;) = probability of finding v; be-
tween v; and v;+dv;.
This gives

Pj(v) = Kldv;|de;ldg; ,

— — —

S 3
o wn

g s

3

............

3

0 1 A
Ty 2
Q—>

(@

lpl/Vp ——>
(b)

Fig. 6. Probability distribution of @ = F|f for a centrosymmetric unit cell (or projection) with (a¢) one atom-pair,
(b) n atom-pairs, n = 2, 3, 4, 0o, showing the gradual approximation to the Gaussian distribution.
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whence the distribution function for ¢; is

1 do;
Pio) = 2 w-gpn Sl @ > i, > -2,
‘ 7

and (8a)

A graph of the function is shown in Fig. 6(a); it has
infinite discontinuities at ¢;/N; = 4-2, and is far from
anything like the Gaussian distribution. The pth

moment, however,
400

Wy = S_mqﬁ%’P;((P) ,

is finite for all p. Application of the central-limit
theorem shows that, with

j=1
we have, when n — oo,
P(¢) = P(p, p+dg) oc exp [—¢?/2¢°]dp ,  (8)
where
n 400 1 n .m n
o? =ZS @iP(p) = = ZS 4N? cos? v;dv; = 3 2NF .
j=1%Y—00 T j=1 Y0 j=1
(8¢c)

The transition from (8a) to (8b) can be studied (as-
suming N;~ 1) by (a) calculating (u,), for various
values of » and p, and (b) integrating numerically
and plotting the actual distribution for various values
of n.

In collecting the results for (a) it is convenient to
give the series for 7, = ((4p)a/(tp)o)"'?> both numera-
tor and denominator having been reduced to a common

value of ¢ The resulting series are given below, and
the calculated distributions for n = 2,3,4 and oo
are shown in Fig. 6(b); the series are derivable from
the results for the random-walk problem given by
Hauptman & Karle (1952), equations (10 and (71).

cr _1+L 2/3 +

e TR T AR

ro =1,
VLU

s =17 160 16m2
2 38

4T T 160 16m2

b3, 132

5 16n ' 160

The series and the curves clearly show that, for
n = 3, the distribution of ¢ is Gaussian to a high degree
of accuracy; this is certainly true for ¢ < 20, and it
can be proved that the error produced in 24 (by the
departure from the Gaussian curve for large @) is
< 0-01. Consideration of special atomic positions shows
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that, except for positions with all coordinates (in-
volved in the summation) equal to zero, there is no
significant effect on the g-distribution; an atom in the
0, 0, 0, position obviously causes the distribution to be
centred about +2N; instead of zero. Special symmetry
elements (cf. Wilson, 1949, 1950) affect only a limited
number of reflexions; moreover, the effect on the
dg-distribution is similar and the net effect on Sy,
is again negligible.

The procedure for obtaining the d¢-distribution is
similar to that for ¢:

Q. = 2% N, cos (vj,—0v;,)
=23 N; cos vj,—23 N; cos vj,.2 sin? 1dv;, .
' ! +23 N, sin vj, sin 6vj,
= @,—2 sin? %6vja(po+2z N; 7
X (—cos v;,(2 sin? %61;7-012 girl2§—61;,-,,)+sin vj, 8in v;,)
= Qo= V102V (@)
where

y, = 2 sin? 4dv;, ,

Yo = V((2 sin? }dv;,—2 sin® %6vjo)2+sin2 61)]-0) .
Thus
0p = @o—@e = V1@ot VsV (95) - (8d)

From this relation, Luzzati (1952) has derived the
value of R =Z[|Fo|—|Fc||+Z|Fc|. The relationship
between the g,-distribution and the (d¢)-distribution

;: +o +20

@, and §9—>

Fig. 7. Relationship between the probability distributions for
@o and 8p = @,—@.; the vertical scale for dp is y, times
that for g,.

with @, between y and y-+dy, is seen in Fig. 7. (The
dg-distribution is easily seen to be consistent with the
overall distribution for |§F| used in §4.) The prob-
ability distribution of the second term in equation (84)
is Gaussian by the central-limit theorem.

Since the values of dv (especially in a two- or three-
dimensional summation) are distributed approximately
in a Gaussian fashion (cf. Appendix 2), explicit ex-
pressions for the y’s are readily obtained.

We put (dv)2 = u2, and dv = y, the averaging being
over the reflexions in a small range of A, k,{. Then
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Y1 = 2sin% 0w = 1—cos yu =
0 o0
§ (1—cos ) exp [~ 2221 dp / \ exp [—u2/2ur)dp
[ J,
u2 ut ub
=511 222l

. = 1—exp[—}u?]. (9a)

Now,

y3 = (2 sin? }dv—y,)2+sin? v
— 45inf L +y2—2y,.25in? Tu+sin? 4
= 4 sin? Ju+sin® u—y}
= 2(1—cos p)—3} = 1-(1—p,)?
= l—exp [—u?]. (9b)

The full curve of Fig.7, representing the g,-
distribution, has for its equation

P((po: (po+d(p0) = eXp [_ ‘1’3/20'2] d%/
+oo

{ exp[—gii20%dg, .

The equation of the d¢-distribution (broken line) with
@, between +y and +(y+dy) will then be

P(og, dp+d(dp)) = exp [—(dp—y,y)?/2y302]d(d¢) /
+00

§_exp [~ (Gp~y)12y4?1d(50)

It follows that the fraction of the d¢’s that are greater
than y is (cf. shaded area in Fig. 7)

v = P07, dp+d(op)

= S 1-y, €Xp [—2?]dz / S+°°exp [—2%]dx

V2.y:0

-2\, expl-atlas,

v2.ya

Y = yol(1—y,;) = (exp [u2]-1)}. (9¢)

This fraction of the ¢,’s between +y and +(y+dy)
will have their signs changed; the ¢,’s between +y
and +(y+dy) form a fraction dy, = 1)/(27n)exp
[—%%20%]dy of the total number of ¢’s under con-
sideration; thus

Bra = S 'Pd'l’tp
= 2 Cexp [—y2j20%dy |, exp [—a?de
V2.70 9, sz-ya
2

Swexp[—yzt?] Sooexp [—=x?]dxdt .
[ t

t =yly2.yo)

T

THE EFFICIENCY OF CONVERGENCE IN STRUCTURE DETERMINATION. I

These integrals depend only on ¥, and therefore on u;
and u is a function of A, k, I, only through the Bragg
angle, 6 (cf. Appendix 2 below). B can therefore
be written as fy, and integrating by parts, we obtain

2 oo t 00
Bo = Buu = L4 l ( S exp [—xz]dx)( S exp [—Vztz]dt) l
JT t 0 0
2y o0 t1
+—~S exp [—12] ( S exp [—y2%%] dt) dt
T Yg 0
. 0+2_y(1_1y_2 1p4.2 196.2.3
ST w\2 23 725.21 2 7.31 )

I
=—tan~ly. 1

~tan™y (10a)
The series is convergent in the domain 0 <y < 1,
but the result holds for all real y by the principle of
analytical continuation. Combining (10a) with (9c),
we finally get

Be = yl—tta,n‘1 V (exp [u?2]-1). (10b)

Curves for u/y against %, and 28, against u are plotted
in Fig. 8. By expanding f, in powers of u, we get

u u2 u4>
~ (11—, 1
Bo n( 12320 (100)
10 —
~
0-8 ~ zpa
06 1 ~ — —uy
~N
04 ~
~
02 1 ~ -
0 . —
0 1 2 3
u—->

Fig. 8. u/y and 28y as functions of u.

where the last term has been increased by a factor
of 3/2; this approximation is correct to within 0-001
for v =2, and is useful in calculating the integrals
for 7, ete., the integral from 2 to U (> 2) being small
and easily obtained numerically.

APPENDIX 2
Validity of the approximations

The simplifying assumptions and approximations
made in the foregoing analysis are discussed briefly:

(@) It has been assumed that the dv;’s for the
reflexions in a small range of %, k, ! have a normal
Gaussian distribution. For a one-dimensional sum-
mation, 0v; = 2n(k/a)ér;, Now, there is a definite
probability distribution of each éw;, giving the
probability that a particular dx; lies within specified
limits; a number of plausible distributions are shown
in Fig. 9(a). The Gaussian curve is ‘reasonable’, ex-
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cept that it is not truncated, and is in any case a close
enough approximation to the others; this latter is
strikingly brought out in Fig. 9(b) by the curves of
+28y against u for the distributions of Fig. 9(a).

s—+-—— Square
— — —~- Triangular
Gaussian

e -
10 ==
I 08 L5
P
06 27 -+—«—:- Square
< | WV —=——- Triangular
04 Gaussian
02 1
1 2 3
u—>

()

Fig. 9. (a) Some plausible probability distributions for ovj.
(b) The corresponding curves for 28y against .

For a two-dimensional summation, d&v; =
27{(hja)dx;+ (k/b)dy;}, so that, for a symmetrical
summation over positive and negative h, k,

s i )

For a large number of d2’s and dy’s, the r.m.s. errors

in the z- and y-coordinates will be equal, i.e. (6x)? =

(y)? = A2 Thus

whence
u = Y((60)) = 27n4/dpo = (4n/D)Asin 6, (11)

and is a function of %, k, through the Bragg angle, 6.
In this case the probability distribution of the dv;’s
is smoothed out and approaches the Gaussian form
more nearly because of the addition of the two sym-
metrical distributions of (k/a)dx; and (k/b)dy;.

Similar considerations apply to the three-dimensional
case.

(b) The validity of the tacit assumption made in
deriving equations (5), that there is no correlation
between the dv’s and the v’s, is fairly evident.

(c) When deriving equations (5) it was also assumed
that there is no correlation between the value of
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sin® v, and the correctness or otherwise of the signs
of F given by the assumed structure. Now,

n
F =2f3 N;cos v;,
j=1
in which »; enters in one of the n terms, and
n
OF = —4f X N;sin }(vj,+v;,) sin $6v,, ,
j=1

which involves all the »;’s and dv;’s. Thus, for large
7 and small F’s (which are the most likely to be given
wrong signs), sin?wv;, is not appreciably correlated,
either with F or with OF.

(d) In equation (5b), the quantity 48 was inserted
to cover the statistical fluctuations. These are: (1)
fluctuations of sin2v;, about its mean value for the
group of reflexions, and (2) fluctuations of g about its
mean value as given by equations (10). It is easily seen
that, if there are N, reflexions in the group, we can
write

(N14B)? =~ (38N, +BN,) = 1-5N,8 .

Summing up over all the N reflexions, we have

(NAB)2 ~ 1-5N8,
whence _
Ay = 2/((4B)°) =~ 2//(1-56/N)
~ JB(1-n)/N),
which is small for the useful values of % and N(~ 100).
We can estimate the fraction (s) of the total number of

corrections that are in the wrong direction. With
N = 300, and a Gaussian distribution of A%, we get

n: 10 05 0-2 0-15 010 0-05
2s: 0 000 004 012 030 061

It is also possible to find the limiting condition
necessary to keep s small, say less than 0-15. This gives

o 3(1—17))_1/(1—7,) 145 (1—77 )
"‘A"“V( v )=V \er)*yx: \om7 Y-
For a two-dimensional summation with %, and

ko~1, up/U =~ (hy—4%)/H =~ 1]y N, (where uy and U are
the minimum and maximum values of % in the sum-

mation) and therefore
el
n = (0.7 x1:45 (7).
From the two-dimensional curves corresponding to
Fig. 1, the limiting values (with Uju, > 1) are:

v =3: 4y~ 035, and N =~ (U[u,)? is not limited.

v =4: ug~ 0-35(U/u,)'%, so that if u, < 035, N ~
(Ulug)? is not limited.

For Ufuy,~ 10, these limits are much the same as
the corresponding radii of rapid convergence (cf. § 5)
for two-dimensions. It is interesting that N is not
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limited when v = 3 or 4. This occurs because the rate
of decrease of 7 with increasing U is equal to or less
than that of 47, and it confirms the suitability of these
indices.
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Calculated Powder Patterns from Very Small Crystals:
Body-Centered Cubic Cubes
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The X-ray scattering patterns of several cubic arrays of points arranged on a body-centered cubic
lattice have been computed according to the Debye scattering formula, I = 3 3 (sin rys)/rys

i

and plotted as a function of ¢ = as, where a is the unit translation of the lattice.

The dependence upon the scattering angle of X.ray
intensity scattered from an assemblage of crystals in
the Debye-Scherrer arrangement may be described in
terms of Bragg’s Law; or alternatively in terms of the
Debye scattering formula
I6) = S 3=,
i 'rijs

where s = (47z/A) sin $0. When the discrete crystallites
making up the assemblage are large (of the order of
tens of thousands of unit cells or more), these two
relations give identical positions of maximum in-
tensity. As the crystallites become smaller, the familiar
line-broadening effect appears. In addition to the
actual broadening of the powder lines, this effect in-
cludes also a loss of resolution between adjacent lines,
coalescence of adjacent lines, and disappearance of
both the weaker lines and the lines occurring at high 6.
Numerous investigations into the relation between
amount of peak-broadening and size of crystallite have
been published. The companion questions: of minimum
crystallite size for the appearance of a given (weak)
line; of minimum crystallite size for the resolution of
two or more adjacent lines; of the size below which
the finer details of the pattern are absorbed into the
background scattering; and of the preferential sup-
pression of diffraction detail as the crystallites are

* To whom inquiries concerning this article should be
addressed at: Department of Chemistry, Miami University,
Oxford, Ohio, U.S.A.

asymmetrically reduced in size or the preferential
appearance of characteristic lines as the crystallites
are enlarged in preferred directions: have been more
neglected.

Probably the conceptually most satisfactory answer
to these questions is obtained by actual calculation
of the scattering patterns characteristic of crystalline
assemblages of appropriate dimensions. It is then
possible to inspect plots of the Debye scattering func-
tion for a series of crystallite sizes and shapes, and to
form a coherent and detailed mental picture of the
gradual transition from the diffuse and characterless
haloes of the patterns from very tiny crystallites to the
family of discrete lines characteristic of indefinitely
large crystallites. The availability of high-speed com-
puting machines makes the task of numerical evalua-
tion of the Debye scattering function rather less
formidable than it once was, even for relatively large
crystallites.

The present communication presents the results of
such calculations for the case of body-centered cubic
homoatomic crystallites, cubic in shape, and ranging
from one unit cell (nine atoms) to a cube of 1000 unit
cells (2331 atoms). Plots of this kind have already
been published by Germer & White (1941) and by
James (1948). The results of Germer & White cover
the case of face-centered cubic assemblages. Their
calculations were spaced at considerably larger inter-
vals than in the present paper, however, with the
result that the background is not well-delineated ; and



