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An Analysis  of the Efficiency of Convergence of Different Methods of 
Structure Determination.  I. The Methods of Least Squares  and Steepest  Descents:  

Centrosymmetr ic  Case. 

BY M. M. QlmAs~* 
Physics Department, College of Technology, Manchester 1, England 

(Received 25 March 1952) 

A theoretical derivation of the 'efficiency of convergence' of the methods of least squares and 
steepest descents is given for large departures of the assumed approximation from the correct 
structure. The effect of incorrect signs is considered in detail and a mathematical expression is 
obtained for the efficiency of convergence, 7, for an n-dimensional summation. (The effect of 
overlapping atoms and of unobservably weak reflexions is also discussed.) It is shown that ~ can be 
expressed as a function of u = 27rA/dhkz, where A is the root-mean-square error per atomic co- 
ordinate. The characteristic behaviour of ~ under various conditions is discussed, and approximate 
expressions are obtained for the radius of rapid convergence, within which it is possible to speed 
up the convergence by using the theoretical value of ~. Curves to facilitate this are drawn, and a 
numerical example of their application is given. 

1. Introduction 

The methods of Fourier synthesis, least squares, 
steepest descents, and other allied techniques, as used 
in crystal-structure analysis, all depend essentially on 
the principle of successive approximations. Thus the 
corrections (to the assumed atomic parameters) fur- 
nished by one application of any one of these methods 
are in general less than the actual corrections required, 
and we may define the efficiency, 7, (of a particular 
method) for a parameter,  u# as 

U(uj) = ~ujc/~uio , (la) 
where 

~Ujo = actual correction required, 
and 

($uic = correction obtained from one refinement. 

An expression for ~ for the modified method of 
steepest descents has been derived elsewhere (Qurashi 
& Vand, 1953) on the assumption that  the observed 
structure-factors, Fo, are known completely, i.e. both 
in magnitude and relative phase. A little consideration 
shows that,  under these conditions, the efficiency of 
the Fourier-synthesis method is uni ty  (provided there 
is no overlap), while for other methods it is less than  
unity. In  actual practice, only ]Fo] is known ex- 
perimentally, while the phases have to be obtained 
from the assumed approximation, and may be in error 
to a considerable extent. The efficiency, ~F.s., for the 
Fourier-synthesis method now also falls below unity,  
as is shown by the necessity of using successive 
approximations to obtain the correct structure. 

If the value of ~ appropriate to a particular para- 
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meter can be calculated for the method being used, 
it should be possible to obtain the actual correction 
from equation (la) as 

6Ujo = ~ujc/~(uj). (lb) 

One application of the method of refinement used gives 
~uic, and division of this by U should give us the final 
correction, which would otherwise be obtained after 
a series of successive refinements. Thus, in addition to 
throwing light on the mechanism of the refinement and 
its convergence, the evaluation of U for different 
methods of structure refinement is of considerable 
practical importance. 

The purpose of the following analysis is to derive and 
evaluate expressions for U for the methods of F o u r i e r  
synthesis and modified steepest-descents, the ex- 
pression obtained for the latter being valid also for 
refinement by least squares. I t  is convenient to con- 
sider first the method of steepest descents; the 
analysis for the Fourier-synthesis method is a con- 
siderable elaboration of that  used here, and will be 
discussed separately. So far the results for centro- 
symmetrical  structures only have been obtained in a 
complete form; it is hoped to publish those for the 
acentric case soon. 

2. List  of contract ions  

In  order to simplify the writing of the equations 
involved, we use the following contractions, some of 
which are standard:  

Fo = observed value of F. 

~c = calculated value of F. 
(F is in general a complex quanti ty  to 
include phase and magnitude.) 
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Z 
hkl 

V - - -  

V 1 =  

Xi. e = 

X i o =  

X j o  e = 

&Xjo = 
= 

o~Vio= 

~vs~ = 

= 2~2`~Y. 
h k 

2~{(h/a)x + (k/b )y + (l/c)z}. 

2~{(h/a)xi+ (k/b )ys+ (1/c)z~}. 

(~S)~c~at~a or (xi)~,=ea" 
( X S ) o ~  or (~)=~a~. 
value of Xs given by one application of the 
method of refinement under discussion. 

(~xs)o = Xso-Xse. 

(~xs)o = XSoe--Xie. 
2~r((h/a)aXio + ( kib )(~yio + (l/c)6zso} . 
2~{(h/a)~xse + (kib)~ys¢+ (1/c)Szs¢ }. 

3. Derivat ion of express ion  for 9/ 

Define a quantity,, Foc, as follows: 

lF0el -- IFol, arg Foe = arg Fe,  (2a) 

i.e. Fo¢ has the  phase of F¢ and the magnitude of Fo. 
Thus Foe is-;the quantity that  replaces Fo in a practical 
Fourier synthesis 

1 
~y~ = -~ ~,  Fo exp  [2~i{(h/a)x+(klb)y+(1/c)z}] . 

hkl 

Also, in the practical application of the methods of 
steepest descents and least squares, we must minimize 
the residual 

R = ~ W2(iFol-]F~I) 2 

instead of 
R'  = 2 ,  W ' ( F o - F D " ,  

hkl 

where W represents the weight given to (]Fol-lFe[) 
for any particular reflexion. This form of the residdal 
will lead to the modified steepest-descents formula 
with optimum convergence (cf. Qurashi, 1949) 

hkl j I [ \hkl 

(3a) 

We have from equations (2a) 

IFo~l/Foo = IFd/Fo, (2b) 

and, considering only the centro-symmetrical case, for 
which 2' is always real, formula (3a) transforms into 

~u]c = e j  

o  ll(z w,(O-'oTI. 
Thus the effect of introducing IF I in place of F in 
the residual is equivalent to replacing Fo by ~'o¢ in 
the final expression for Ouic. :Now, 

and 

o r  

Fo¢-F~  = ( F o - F D + ( F o c ~ - F o ) ,  

Poc-Fo = 0, if arg Fo = arg Fc,  

= - 2 F o ,  if arg F o # arg 2'e, 

(4a) 

since the condition arg F o # arg F¢ within F real 
implies that  the sign of Fe (and therefore of Foc) is 
opposite to that  of Fo, i.e. the assumed approximation 
gives the wrong sign for F.  0nly for such reflexions 
is there a contribution from the term (Fo¢-Fo), which 
is then equal to 

n 

- 2 F o  = - 2  × 2 2`  f i  cos Vso , (4b) 
i=1  

where fi is a fraction of the scattering factor of the 
corresponding atom determined by the degeneracy in 
multiphcity of the atomic position. 

Putting 

/ = 2 D / n ,  ~vs = D / / ,  (~vs "~ 1) 
i=1 

we have 
F = 2 f ~ N  i cos v i (4c) 

i 

and, on putting Vso = v#+OVio, (4b) becomes 

- 2 F  o = - 4 f ~  NS (cos vic cos OVio-Sin vie sin 6Vjo ) . (4d) 

Also 
Fo-Fo  = 2f,Y N i (cos VSo-COS vsD 

J 

= -2f~Y Ns(2 sin 2 ½&so cos % + s i n  % sin &so). (4e) 
i 

Multiplying (Foc-Fe) by 

W 2 0Fc h 
- 2 W2fNi  - sin v~ ,  

2~  Ox~ 

using equations (4a), (4d) and (4e), and summing over 
h, k, l, we obtain 

1 ~Fe 
2;  W'(Fo¢-FD 
hkl ~Xi 

= 4 2 W~f 2 Z ,  N i N  i (h/a) sin vie(2 sin 9 ½ ~vso cos vse 
hkl 

+sin ~Vso sin vie ) 

+ 8 ~_, Wgf 2 2`  N i N  i (h/a) sin vie (cos 6vso cos vie 
akz i 

-sin Sv o sin v#), 
where ~ denotes a summation over those reflexions 

hkz 
for which Fo and F¢ have opposite signs. We have, 
with a fairly large number of terms in the summation 
(symmetrical over positive and negative hkl), and, for 
orthogonal axes, 

sin vie sin vic = 0 for i # j ,  

cos vic sin v~ = 0 for all i, j ,  
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1 . 2  W2(Foe-F~) ~F¢ 
2x  hk~ ~xi 

= 4 sin 2 vi~ Z,  WefeN2(h/a) sin OVio 
hkl 

- -  8 sin 9" vic.~ WefeN2(h/a) sin 6Vio. 
hkl 

(Oblique axes can be treated as in § 7, Qurashi & 
Vand, 1953.) A little thought shows tha t  no correlation 
exists between the value of sin ~ vie and the agreement 
or otherwise of the signs of 2' 0 and F c for the corres- 
ponding reflexions. (This is discussed in detail later in 
Appendix 2.) I t  follows tha t  the two averages for 
sin e vi~ have the same value, and therefore, using 
h = fNi ,  

2x ~ ~ = 4 sin 2 vic(.~ W2f2(h/a) sin (~vio 

- 2  ft, Weft(h/a) sin 6Vio) . (ha) 

Suppose tha t  in a small range of h, k, l, a fraction 
tinct of the total  number of reflexions (in tha t  range) 
has F o and F¢ of opposite signs. Then (ha) gives 

W~(Fo _F~) eFe = 4 sin~ v,e ~ WV2(1-2( f l~ ,+Af l ) )  
hkl O~i hkl 

× 2~(h/a) sin (~Vio, (hb) 

where Aft takes account of statistical fluctuations. Its 
effect is further discussed in Appendix 2. 

Using the fact tha t  

. ,~ W 2 = 4 . ~  W 2 f  2 x 4x~Z(h2/a 2) s i n  2 vie , 

we obtain from equations (3b) and (hb) 

(~Xic 

( 2  W~f~(1-2flh~)2xe(h/a) sin (~Vio)/(.~ ° ~ WZf~ . 4xe~(he/a~)) . 
hkl hkl 

The efficiency of the steepest-descents formula for the 
coordinate x i can now be written as 

f~Xie 
~ts'~'(xO (~Xio (2~ WZf2(1-2fl~et)h sin (~Vio)/ 

(.~, W~f~h(2~(h/a)~Xio)), (6a) 
hkl 

.~  W2f~(1-2f l~)h sin 6%0 ~ (1 -2 f l~ )  W~fih 2 
hkl hkl 

= ~ W2f~(1-2fl~z)h(2ze(h/a)OXio) × .~ W2f~h 2 , 
hkl hkl 

where 

W,,~(xi) = ( 2  W~f i (1 -2 f l~ )h  sin ~vio) l 
hkl 

( 2  W~fi(1-2fl~k~)h 6V~o) , (6b) 
hkl 
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since replacement of 2x(h/a)6Xio by (~Vio does not 
affect the result, and 

Uy(xi) = (.~v (l_2flhkz) W2f~h2)/(.~v W2f~h 2) . ( 6 c )  
hkl hkl 

Let us suppose for a moment tha t  the signs of all 
the Fo's are correctly known; then flhkz-~ 0, and 
therefore ~]F = 1; also in this case ~T,o(= Usm.) be- 
comes the efficiency of the modified steepest-descents 
formula discussed elsewhere (Qurashi & Vand, 1953), 
where the subscript 'T '  is used because ~]~, o is analogous 
to the efficiency of the first term of a Taylor series 
as an approximation to the series (curves for rIT, O in 
Fig. 2). I t  can be shown (after Cochran, 1948) tha t  
the structure obtained by one :Fourier synthesis in 
the centro-symmetric case is the same as tha t  to which 
the steepest-descents method converges, if, instead of 
Fo, we use Foe as defined by the .initially assumed 
structure. This suggests tha t  the quant i ty  UF(xi) gives 
at  least approximately the efficiency (UF.s.) of the 
F o u r i e r s y n t h e s i s  method; this will be discussed 
further in Par t  I I  of this paper, and the subscript 'F '  
has been used here for ~F because of this relationship. 
I t  is interesting to note tha t  UF is independent of (hxj, 
etc., individually, and tha t  (when flhkZ # 0) UT,~ differs 
from the UT, o previously discussed in tha t  the weight, 
W, is now replaced by 

W ' =  W(1-2fl tm) ~/2 . 

Also we see from (6c) tha t  VF is in fact a specially- 
weighted mean value of (1--2flhk~), averaged over the 
reflexions used. In  order to evaluate U~ it is aecessary 
to obtain an expression for flhkl. 

• Before doing this, it is pert inent to remark tha t  the 
modified steepest-descents formulae (3) are identical 
with the results obtained by the (linear) method of 
least squares, when the small cross-product terms are 
ignored (cf. Qurashi, 1949); also, the effect of the cross- 
product terms can be taken into account by means of 
an overlap coefficient, aij, (cf. § 3, Qurashi & Vand, 
1953), so that  

5xi¢ = UF× (~TT(xi)hxio+ 2 aijfj/fi ~?r(xi)6xio) , etc., (6d) 
i # i  

where UF is the same for all the atoms and Ur varies 
only slightly from atom to atom (§ 5 below) and 
is identical with the corresponding coefficient in the 
appropriately weighted least-squares solution. I t  
follows tha t  the least-squares solution will give the 
values of 

so tha t  

UL.S. = Usm., (6e) 

and the formulae (6) and other formulae derived from 
them later will also be valid for the method of least 
squares (of. also the discussion on page 581). 
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580 THE EFFICIENCY OF CONVERGENCE IN STRUCTURE DETERMINATION. I 

4. E v a l u a t i o n  of #h~t 

We now derive an expression for f l~ .  
Equa t ion  (4c) gives 

IFol ~ = 4f '~(~ N~ cos V~o) 2 

= 4 cos  = 2 f ' . v  

and 

I~FI ~ = ( F o - F c )  ~ = 4fa(fl_2 N1 (cos V~o-COS vi~)) ~ 

= 4 J ~ ( ~ : - N ~ × 2  sin v ~  sin ½~v~o) ~ 

= ~ 4 sin ~ ½6Vlo. 4 f f N ~ s i n  ~ V~,n 
i 

= 4 sin ~ ½ 6 V o . 2 f ~  N~.. 
i 

(v~m =--- ½(vio+vic); sin ~ :~vo ---- sin ~' ½(~v,]o averaged over 
all j and some hkl.)  
Thus 

]/(I~FI2) /1/(IFol =) = 21/(sin~ ½(~vo) = 7 ' ,  

and is somewhat  analogous to the  cus tomary  'figure 
of meri t '  for a structure. 

I t  can be seen in a general  way  tha t  approx imate ly  

fl~kZ ~ V(I~FI2)/l/([Fol ~) = 7 ' ,  (7a) 

and therefore, for smal l  u = V((Svo)~), 

flau ~c u .  (7b) 

The constant  of proport ional i ty  and the exact  ex- 
pression for flau have to be derived from a con- 
sideration of the  s tat is t ical  dis t r ibut ion of the  F ' s  
and the errors (Fo -F~) .  This is done in Appendix  1, 
and the va l id i ty  of the  assumptions  and  approxima- 
tions made in the analysis  is discussed in Appendix  2. 
In  Fig. 8, to  =-fl~u is graphed as a funct ion of u. 
Also, u is shown (in Appendix  2) to be equal  to 

2z~/1/da~ = (4zt/~t. A) sin 0 , 
where 

A ~. = (6x) 2 = (Sy) ~- = (6z) ~ . 

5. Evaluation of ~/s.a. 

We can now calculate ~.D. numer ica l ly  as a funct ion 
of u 0 and  U, the  m i n i m u m  and  m a x i m u m  values of u, 

assuming tha$ all reflexions between the  corresponding 
Bragg angles, 0 o and  O, are used. Using the  results 
of the analysis  for ~ (Qurashi & Vand, 1953), we take 
W g f f = d  ", (v ,-, n + 2  for an n-dimensional  summation) .  
We shall consider in detail  the  cases v - n  = 2 (op- 
t i m u m  value), and  v - n  = 1. The smaller  value is 
desirable for the  later  stages of ref inement  in order 
to make  full  use of the  high-angle reflexions. Since 
f j f  = N i does not  in general  va ry  great ly  in the 
useful range of sin 0/~t (Harker & Kasper,  1948), we 
replacef i  b y f  in formulae (6); any  significant var ia t ion 

of /V i can be allowed for by  vary ing  the  index, v. 
(It will appear  from the curves for UF in Figs. l (a)  
and  l(b) tha t  the effect of this  var ia t ion is usual ly  
unimpor tant . )  

0"8 

0"6 

0.4 

0"2 

(o) 

0"8 

0"6 

0"4 

0"2 

- - V 2 o  

~ ~ ~  '=I//10 

U= 2 ~ / I /  d .... 

(b) 

Fig. 1. Curves for @T,t~' ~F and  ~lS.D.' agains t  U = 2ztA/dmin. 
for a one-dimensional  s u m m a t i o n  wi th  (a) W 2 f ~ =  d ~, 

(b) W2f  a = d a. 

(a) The  one-d imens ional  case 

Using the  symbol  ~ '~  to denote the  value of U for 
an n-dimensional  summat ion  wi th  W~f  ~ = d r, we have,  
on replacing the  summat ion  b y  an  integrat ion (valid 
in most  pract ical  cases, e.g. the  error in ~s.D. is less 
t han  0.02 when A / a  = 0.1), 

~1,, / x ~ = _ I o(1-2  d f lo)u~- 'du ,  '1~,~ iJ to)U2_" sin u '  

where (12a) 
u'  = 2n(h/a)l()x~l = ( l~xd /A)u  , 

and 
 olU (ho- )lH ,* 

Put t ing  uo /U = !i5, we obtain, after simplification, the  
following series 

* For  exac t  equivalence of t he  surmnat ions  and  the  integrals,  

( Uo~_2rl A - ho - -~+ , U ~ _ 2 r ~ H + ½  A .  
a a 
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U U ~ ~ [ 
~7]~ = 1 - - ~  (1 +~b)(1--2-4 (1 +~b )+""  ' ) '  (13) 

U2(1-~b)  U °- 
• ]]~ = 1  ~ ~ 1-~  ( 1 - - ~  (1+(/))+...). 

Curves for ~ w i t h #  = 1/10 and 1/20 are drawn in 
:Fig. 1. I t  should be noted tha t  the portion U < z~ 
is the most important ,  since with U = z, the reliability 
index, R = ZllFol-li%ll+ZlF~l, is of the order of 
70% as against the limiting value of 83% (Luzzati, 
1952). Also, it  is shown below tha t  the ~7-curves can 
be used unambiguously only in the region ~]s.~. > 0.5 
or U < ½z~ approximately.  Comparison of the ~]~- 
curves with those for ~2r, o(fl0- 0; shown in Fig. 2) 

0"8 

0"6 

0"4 

0"2 

"% \ ~ . . . . .  ~s.a 
• \ . . . . . . . . . .  

% 

~,~°~° 
~~~'~}~=2 

U 2~,4  _ 2 . ~ H ( a x )  
"- d'-d~,.. -- 

Fig. 2. Compara t ive  curves  for ~/~,o' ~?F' and  ~ .D.  in a typica l  
case wi th  q)---- 1120. The curve  labelled (~/&/).)e includes 
al lowance for the  effect of unobserved  reflections (§ 6). 

indicates tha t  v/~ is the dominant quant i ty  in deter- 
mining the curve for ~.~.  (= ~ .  ~T,~) especially when 
U < g. This suggests tha t  in calculating ~r,~, it is 
sufficient to put  

lax l = - -  A .  

(sin u)/u now replaces (sin u')/u' in equation (12a), 
and we get 

, , ,  IV( l_2 f l  )u~-,sinU u/S  v ~Tr,~ = o d (l-2flo)U2-"du "~_ ~T, Oa'" 
uo "1~ ~ uo 

for U < ½~r. (12.c) 

(Deviations of the actual [Oxi]'s from A can be taken 
account of sufficiently accurately by drawing the 
curve for ~]~,~ from the following characteristics: 
(1) ~2z,~(U)_~ VT, o(U') for small U' where U'/U = 
]Ox~l/A, (2) Vr ,~ (U)_  ~ Vz, o(¼U) for large U', and 
(3) the transition from (1) to (2) occurs at about 
U = 2.5.) The first two terms in the power series for 
~Ts.~. are identical with those in the corresponding 
series (13) for ~2y- 

Curves for ~]T,e and ~2s.~. are also shown in Fig. 1. 
The rapid fall of ~TS.D. for large U is remarkable;  
although the pr imary radius of convergence Ra 
(defined as the value of u 0 = U × ¢ ,  for which ~]s.~. 
first becomes zero (cf. Qurashi & Vand, 1953)) is not 

greatly affected, an important  effect appears when 
~s.~. is plotted against U~ = U × ~]s.~. = 2~A d d ~ . ,  A o 
being Y~) ,  where ei is what  would be obtained from 
the steepest-descents formula (3b). The curves (cf. 
Fig. 3) now give a double solution for ~s.~. throughout 

0"~ 

0"6 

~'°o-~ 

0"2' 

0"8 

0"6 

• ---'~=1/10]]! ~':°0"~, 
/ 0"2 

- - - =1/2o \ \  . .  

- - ¢ = ] / ]  0 ) )  "x / \  , 

0"5 1"0 0"5 1"0 I"5 
u~= 2 ~A¢~,°. u~= 2~zCd~,~. 

(a) (b) 
Fig. 3. Curves for r/s./), against  Uc= 2mdc/dmin. for n-d imen-  

sional summat ions  wi th  (a) w 2 r  z = dn+ 1, (b) W2f f  " = dn+2; 
the  outer  pair  of curves is for n ---- 1 and  the  inner  pair  for 
n = 3 .  

the usable range (% < R 0. In  order to use the ~- 
curves to correct for low efficiency, it is necessary to 

k n o w  which solution to use. In  some cases we may  
have other evidence, e.g. from an analysis of the 
reliability factor (Luzzati, 1952), which indicates the 
upper branch of the curve; a general criterion can be 
obtained as follows: 

Suppose we begin with an approximate structure 
with known ~x i = ~. The first refinement gives el = 
~](~)x~; the second will give e~ = ~](5-el)x(~-ea) .  
If we plot ~](5-el) against the 'convergence ratio '  

e = e 2 / e l  = V ( ( ~ - - 6 1 )  x ( ( ~ / e 1 - 1 )  ~- ( 1 / ~ ( 0 ) - - 1 ) ~ ( 0 - - ~ 1 )  , 

it turns out tha t  the curve will give the value of ~]s.D. 
uniquely, provided Q < 1; the region of multiple 
solutions lies at  ~ > 1. (For large U, ~ tends to a 
limit greater than  unity.) Such curves can be derived 
from those already drawn, and are shown in Fig. 4. 
When Q > I  or ___~1, it is safe to assume tha t  
~]s.~. < 02S.D.)Q=I, and it will always be useful to 
employ this value (~  0.5) of ~/ to speed up the con- 
vergence in such cases, without any risk of over- 
shooting the correct structure;  this is equivalent to 
doubting the shifts obtained from formula (3b). As the 

0"8 

0"6 
~/s%. 4 

0 2  

:" O.5 

- -¢=1 /10  ~ o.2 

0:2 0:4 0:6 0:8 110 
e =~2/e, 

(o) 

x 

i 

022 024 0:6 0:8 110 
~=e,/e, 

(b) 

Fig. 4. Curves for ~?s.a. against  the  convergence rat io,  0 = %/et 
for n-dimermional summat ions  wi th  (a) W 2 f 2 =  d n+l, (b) 
W~p = dn+2. 
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correct structure is approached, the value of ~ will 
drop significantly below unity, and we can then obtain 
the correct value of ~s.~. from the curves of Figs. 3 
or 4; use of this value should theoretically give the 
final structure in one step. However, when ei is 
obtained from formula (3b), in deriving which cross- 
product terms are ignored, the value of Us.~. is subject 
to a statistical error of the order of ½V(n/N), where 
n is the number of atoms involved and N is the number 
of reflexions used in the summation. This will leave us 
with a small residual error to be removed by further 
refinement. If, as in the least-squares method, the 
cross-product terms are included, this error is reduced 
to a negligibly small value. Finally, it should be men- 
tioned tha t  in practical applications it would be better 
to use an average value of ~, no, mely 

Since we cannot correct for the small efficiency in 
the region of multiple solutions, it is important  to 
s tudy its extent  and to minimize it. When ~--- 
(A¢),/(A¢) 1 = 1, the mean of the values of U for the 
two refinements used to determine ~ corresponds to 
the maximum of U¢ (cf. Fig. 3), and we use this to 
define a secondary radius of (rapid) convergence as 

R~ = (%) ~,=~.  = • × (U) ~ = ~ . .  

Calculation gives the following approximate values 
• for R~: 

v: 1 2 3 4 . . .  oo 

R~" 7rqb(1-~/2q5) ~z~(1-V2~)  0.36 0.44 . . .  0.62 

For v _ 3, R~. is seen to be independent of ~ = Uo/U, 
the variation with v being 

: r v - 2  
R~ __~ (v ~ 3) .  

5 v - l '  

Thus v = 3 is important  as being the smallest index 
tha t  makes R~ independent of ¢ ;  further increase of v 
will increase R~ slowly, this increase being more than 
offset by the rapidly increasing overlapping (cf. Fig. 4, 
Qurashi & Vand, 1953) between distant atoms. 

(b ) n -Dimens ional  automations 

For a three-dimensional summation, we consider 
integration over three variables, u 1 = 2:r(h/a)A, 

u~ = 2z(b/b)A, u s = 27~(1/c)A, so that 

u~ (~v)~ 2 2 2 
= = u l+u2~-u3 .  

Then 

In  order to integrate over a spherical annulus from 
u --- % to u = U, we first consider a narrow annulus 
of radius u and thickness du; we perform the integra- 

tion with respect to u 1 over this annulus and obtain, 
after putt ing ul /u  = sin ~ ,  

uo - C O S  OJ/ 

which is precisely the expression (12b) for ~V(x~) with 
v - 2  in place of v. 

Thus 

V~v ~ ~]~-e, and similarly ~/~ -- V~,~-I, 

so tha t  ~ '~  curves with a given value of ( v - n )  are 
identical; since ~]T,# has only a small effect on ~S.D., 
the discussion of the one-dimensional case will apply 
to n-dimensional summations on replacing ( v - l )  by 
(v-n).  

Next consider ~,#.a'v Transforming the axes to make 
the x-axis parallel to the resultant displacement ~i of 
the i th  atom, and writing u~ = (~dA)ul, we have 

ss / ~,,~(x~) I u-V(1-2#°)u~ sm ul = ----7-- duldu~du3 
%1 

Ignoring the variation of ($i as before, and taking its 

r.m.s, value V(~t~)= ]/3.//,  we get 

i v  (1 - 2~0 ) u a - " d u .  
u0 

Curves for ~ are drawn in Fig. 5 as functions of 
U and of U a = [/3. U; for ]~1 ¢ V 3A, the dependence 
on U' (now = (6i /A)U) is much the same as in one 
dimension. Curves for 3,~ ~S.D. are shown in Fig. 3 along- 
side the one-dimensional curves; the curves for ~s.D.3'" 
against ~ are too close to the corresponding one. 
dimensional curves to be shown separately, and there- 
fore mean curves (~s.~. correct to within -4-0.010 for 
n = 1 to 3) are drawn in Fig. 4. 

6. Effect of unobservably weak reflexions 

When some of the reflexions are unobservably weak 
and it is desired to include them (e.g. to obtain a more 
representative value of the coordinates), the effect on r/ 
can be estimated as follows: 
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F r o m  e q u a t i o n  (4a), r ep l acemen t  of a n y  F b y  zero 
has  ha l f  t he  effect  of revers ing  i ts  sign. If ,  therefore ,  

0 u 2 4 6 
1 " 0  / , , , 

. . . . .  • 

0"8 . . . . . .  v=5 

Iol 

o U3 = ~ ' u  
i 2 4 6 8 

1'0 " ' ' ' 

0"9 ~ . . . . . . . . . .  

o 7 ]  ,=V o - 

Fig. 5. Curves for ~T,/~ as a function of (a) U, (b) I/3U, for a 
three-dimensional summation; the curves of Fig. 5(b) are 
to be compared with the corresponding ~]T,o curves (Fig. 
6(a), Qurashi & Vand, 1953). 

t he re  is a f r ac t i on  fllo of such ref lexions  in  a smal l  
r ange  of B r a g ~  angles,  t he  effect ive va lue  of flo be- 
comes 

t = 

where  fl~ is flo e v a l u a t e d  for t he  measu red  ref lexions 
only .  K n o w i n g  ~0, ~0 can  be ca lcu la ted  a n d  a correc ted  
~-curve  can  be o b t a i n e d ;  ~ a t  U = 0 for  such  a curve  
is g iven  b y  

1- 10 = 1 - ( 2  WV h ). 
hkl [ hkl 

A t y p i c a l  curve  w i th  fl~o = 0.15 is shown in  Fig. 2.; 
i t  is c lear  t h a t  t he  effect  of ill0 is apprec iab le  on ly  
for smal l  U. 

7 .  A p p l i c a t i o n  o f  t h e  r e s u l t s  

We consider  t he  convergence  of successive r e f inement s  
in a somewhat extreme t h r ee -d imens iona l  case, and  show 
how the  above  ana lys is  can  be ut i l ized to  shor t en  t he  
work.  We  t a k e  ~ _  d ~ / d ~ =  = 1/10, I n i t i a l  U = 

2rtA/d~rm. = 8, (A = V(A2), A i = r .m.s,  er ror  pe r  co- 
o rd ina te  in  j t h  a tom) ,  a n d  Ai = A for s impl i c i ty ;  so 
t h a t  A/dmin. = 1"273, and,  w i th  dn~n. = ½2Mox = 
0"355/~,  t h i s  gives A = 0.45 A. The  process of re- 
f i n e m e n t  is shown  in  Tab le  1; c lear ly  we do n o t  need  
to  go b e y o n d  t he  t e n t h  re f inement .  F o r  smal ler  in i t i a l  
values  of U, one can  s t a r t  f rom an  i n t e r m e d i a t e  co lumn 
of Tab le  1. The  d i m i n u t i o n  in  A per  r e f i n e m e n t  is 
seen t o  increase  s t ead i ly  f rom 0.04 A to  0.06 J~ a n d  
t h e n  to  d rop  r a p i d l y  to  z e r o - - t h i s  is o f ten  observed  
in a series of Fou r i e r  syntheses .  

Tab le  2 shows t h e  convergence  speeded up  b y  
m u l t i p l y i n g  t he  ca lcu la ted  correct ions  b y  t he  f ac to r  
K ( ~ 2 )  w h e n  ~ 1 ,  a n d  b y  1/~-~.D. when  ~ <  1. 
( I t  is to  be n o t e d  t h a t  when  K > 1 we c a n n o t  o b t a i n  

as def ined;  i n s t ead  we use 

F(~m~m--1) ~ ((Ac)m/(/Ic)m-1) l/K= ((Uc)m/(Ue)m-1) l/K, 

f rom which  al l  t h e  ~m's can  be o b t a i n e d  since 52 is 
k n o w n  direct ly . )  I t  is seen t h a t  t h e  n u m b e r  of refine- 
men t s  r equ i red  is a p p r o x i m a t e l y  ha lved ,  a l lowing for 
a possible f l u c t u a t i o n  of 0.10 in  the  va lue  of ~s.D. 
used  in  t h e  las t  r e f inement .  

A n o t h e r  possible app l i ca t ion  is to  t e r m i n a t e  a 
Fou r i e r  series (or o the r  r e f i nemen t  t echn ique)  a t  a 
su i tab le  uppe r  l imi t  of indices so as to  o b t a i n  a large 
va lue  of 7. F r o m  Luzza t i ' s  ana lys is  (1952) of t he  
dependence  of t h e  re l i ab i l i ty  index  on sin 0/~ a n d  on  
A, i t  is easy  to  e s t ima te  the  va lue  of A. This  can  t h e n  
be used to  f ix  t h e  m i n i m u m  dhk~ so t h a t  

2z~A/d = U < ½~, 
i.e. 

m = no. of refinement 
Initial U =  Ui 
r/S.D. 
U, = Ui. %.D. 

Final U = Ui-- Ue 
Final A /dmin. 
A (h) 
6rn= ( Uc)m[ ( Uc)m-1 

Table  1. Normal  process of refinement of a typical structure 
1 2 3 4 5 6 7 8 9 10 11 

8.00 7.36 6"66 5"88 5"03 4-09 3"08 2"04 1"06 0.314 0.028 
0.080 0.095 0-117 0-145 0.186 0.247 0 " 3 3 7  0-481 0"706 0.912 0"986 
0.64 0.70 0"78 0"85 0.94 1.01 1.04 0-98 0"75 0-28 s 0"027 s 

7-36 6.66 5.88 5"03 4.09 3.08 2"04 1"06 0.314 0"028 0-0004 
1.17 1"06 0-933 0.800 0.650 0.490 0.324 0.168 0"050 0.004 -- 
0.415 0.375 0 " 3 3 2  0"284 0-231 0-174 0.115 0.060 0.018 0.002 -- 

1.10 1-11 1"09 1.10 1.08 1"03 0"96 0"77 0"38 -- 

Tab le  2. The Trocess of refinement of the same structure, speeded up with the aid of the theoretical T-curves 

K = 2"5 K = 2"0 

m =no.  of refinements 
Calc. correction =Ac 

5m 
K×Ac 

Final A (A) 

1 2 3 4 5 
0.036 0.040 0.050 0-059 0.034 

- -  1.10 1.07 0.80 
1-11 1.08 1.05 0.60 
0"100 0.125 0.148 07=0"782) 

0.415 0.315 0-190 0.042 0-{-0"005 

1 2 3 4 5 6 
0.036 0-040 0.048 0.056 0.057 0.012 

m - -  1"09 1-08 1.01 0.50 
1.11 1-08 1.08 0.96 0.26 
0.080 0"096 0.112 0.114 0/=0"920) 

0.415 0.335 0-239 0-127 0.013 0±0.002 
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d >  4 A .  

This ensures tha t  ~ is of the order of 0-5 or more. 
(Since Am~.--~ 0.5 A, i r is  always safe to take d > 2 A.) 
A more rigorous discussion is given in Appendix 2(d). 

8. Conclusion 

The main results of the foregoing analysis are sum- 
marized below: 

'(1) When the effect of incorrect signs of the F's  is 
included, the earlier results regarding the suitability 
of the power law as a weighting function and the 
optimum value of the index remain unchanged. For 
W~f ~ = (dhk~) ~, the optimum value for a n-dimensional 
summation is v = n+2 .  

(2) I t  is found tha t  VL.s. = ~s.~. = VF×~T,~, where 
the dominant term, V~, (due to the incorrect signs) 
is the same for all n with optimum v, and (1-~r,~),  
which represents the loss of efficiency caused by the 
failure of the linear approximation necessary in the 
least-squares and steepest-descents methods, is less 
than about 0-25 even for large values of U. 

(3) The convergence ratio ~ of two successive re- 
finements enables the Vs.~.-curves to be used 
practically; for ~ --~ 1, or ~ > 1, it is useful to multiply 
all calculated corrections by  a factor K (2-3); for 

< 1, the precise value of 1/~s.~. can be obtained 
from a curve and the corrections can be multiplied 
by this to obtain rapid convergence. This process 
halves the number of refinements required. 

(4) When the r.m.s, error in the coordinates can be 
estimated, as by Luzzati 's analysis, the ~-curves can 
be used to limit the indices of the reflexions utilized 
and t h e r e b y  ensure a high value of V. 

(5) I t  is clear from general physical considerations, 
and also from the analysis for overlap (Qurashi & 
Vand, 1953), tha t  the foregoing analysis is valid if 
~/3A < ½ (mean interatomic distance) ~ 0.5-1.0 A. 

(6) I t  appears tha t  for small U, ~.~.  (for the Fourier- 
synthesis method) is approximately equal to ~]~, but 

t 
I N  S T R U C T U R E  D E T E R M I N A T I O N .  I 

since the Fourier-synthesis and least-squares' methods 
correct their signs progressively ~at different values of 
A or U, the ~r.s.-curves for large U cannot be de- 
duced in any simple way from those for ~F. For 
large U, ~F.z. must  be obtained by a direct process of 
setting up the residual, R, as a function of fl, xj, yj, z~, 
and finding the values of the coordinates tha t  make 
it a minimum. 

I am indebted to Dr H. Lipson for his interest and 
to Dr I. G. Edmunds and Dr V. Vand for valuable 
criticism. A large par t  of this work was made possible 
by a grant  from the Government of Pakistan.  

A P P E N D I X  1 

We have first to discuss Wilson's asymptotic form of 
statistical distribution of the 2"s. Wilson (1949) has 
shown tha t  with n pairs of atoms in the centre- 
symmetric unit  cell, the distribution tends to the 
normal Gaussian error-function as n--> c¢. However, 
because of the marked departure of the distribution 
for one atom-pair (cf. Fig. 6(a)) from the Gaussian 
curve, it  is desirable to consider the shape of the 
distribution curve for finite and small n. I t  is con- 
venient to use the quant i ty  

cf = F i t  = 2 • N~ cos vj = 2 :  C j ,  
J i 

where ~i = 2 N  i cos v~ is the corresponding function 
for the j t h  atom-pair. If the j t h  atom is in a general 
position, the values of v] for a small group of reflexions 
will be randomly distributed, i.e. 

Pj(v) = Pj(vj, v~+dvj) = Kdvj K = 1 for = 1 , 
y~ 

where Pj(vj, v j+dv j )=  probabili ty of finding vj be- 
tween vj and vj+dvj. 

This gives 
Pi(v) = Kldv /d%ldch ,  

¢,q x 
2 2 

1 

01 

I 
i I 
I 

(a) 

,t~ ~ 3 "  

X 

2-  
J3 

o 

. . . . .  n = 2  
n = 3  

* * , . * * , , . ° , ~  /'/-.~ ~ 

? 7 = 0  0 

101 " ~ / . ~  
1 '~'-~2 2 3 4 

Iq~l//Y~ > 

Fig. 6. Probabi l i ty  dis t r ibut ion of ~ = F / f  for a cent rosymmetr ic  uni t  cell (or projection) with (a) one atom-pair ,  
(b) n atom-pairs ,  n = 2, 3, 4, c¢, showing the  gradual  approximat ion  to the  Gaussian dis tr ibut ion.  
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whence the dis t r ibut ion funct ion for ~i is 

1 / , .  2, xr2,1/2 dq~i ,~ / pi((p) = ~/(~:-(pi / .~vi)  ~ (~ /> (pi/2Vi/> - 2 ) ,  

and / (8a) 

Pi(cf) = 0 ( -oo  < 9~i/N~ < - 2 ;  2 < ~i/5ri < oo). 

A graph of the funct ion is shown in Fig. 6(a); it  has 
infinite discontinuities a t  ~i/Ni = ±2,  and is far from 
anyth ing  like the  Gaussian distr ibution.  The p th  
moment ,  however,  

+co 

= I --co 

is finite for all p. Applicat ion of the  central- l imit  
theorem shows tha t ,  wi th  

i=1 

we have, when n -+ 0% 

P(~)  - P ( %  ~ + d ~ )  ~c exp [ - ~ / 2 a ~ ] d ~ ,  (8b) 
where 

i =  1 _ .7'[: i =  1 i = 1  
(8c) 

The t ransi t ign from (Sa) to (85) can be studied (as- 
suming N1 -~ 1) by  (a) calculating (#~)~ for various 
values of n and p, and (b) in tegrat ing numerical ly  
and plot t ing the  ac tual  dis t r ibut ion for various values 
of n. 

In  collecting the  results  for (a) i t  is convenient  to 
give the series for r~ - ((/~)~/(#~)co)~/P, both  numera-  
tor  and denominator  having been reduced to a common 
value of ~s. The result ing series are given below, and 
the  calculated dis t r ibut ions for n = 2, 3, 4 and oo 
are shown in Fig. 6(b); the  series are derivable from 
the results for the  random-walk  problem given by  
H a u p t m a n  & Karle  (1952), equat ions  (10 and (71). 

1 2/3 
, r  1 =  l + l - - ~ n + l ~ n n ~ + . . .  , 

r 2  ~ ] , 

r 3 = 1 
1 41/144 

16n 16n s 
~ . . . ,  

2 3/s + 
r a =  1 16n 1-6-n ~ " '"  ' 

3 43/24 
% = 1 -  1--6~n+ 1--6~n~ + . . . .  

The series and the  curves clearly show tha t ,  for 
n >= 3, the  dis t r ibut ion of ~ is Gaussian to a high degree 
of accuracy;  this is cer tainly t rue  for ~ < 2a, and i t  
can be proved t h a t  the  error produced in 2fl (by the 
depar ture  from the  Gaussian curve for large ~) is 

0.01. Consideration of special atomic positions shows 

tha t ,  except for positions with all coordinates (in- 
volved in the  summation)  equal  to zero, there  is no 
significant effect on the  ~-dis t r ibut ion;  an a tom in the 
0, 0, 0, position obviously causes the  dis t r ibut ion to be 
centred about  + 2 N  i instead of zero. Special s y m m e t r y  
elements (cf. Wilson, 1949, 1950) affect only a l imited 
number  of reflexions; moreover ,  the  effect on the  
~ - d i s t r i b u t i o n  is similar and the net  effect on flhkz 
is again negligible. 

The procedure for obtaining the  5~-distr ibut ion is 
similar to t ha t  for ~" 

~ = 2 Z  N i cos (Vjo-&io) 
i 

= 2 ~  Nj cos Vio-2.~ .Nj cos V/o. 2 sin ~ ½(~Vio 
i i 

+ 2 Z  hr~ sin Vio sin ~Vio 
i 

= Cfo- 2 sin s ½,~Vio~fo + 2.Z .N i 
i 

× ( - c o s  Vlo(2 sin s ½~Vio-2 sin s ½(~Vio)+sin Vio sin 5Vlo) 

where 

Yl = 2 sin 2 ½6Vio, 

Y2 = }/((2 sin 9" ½~Vio-2 sin ~ ½ & i o ) ' + s i n  s OVio). 
Thus 

± 2 ~ = ~o -~c  = Yl~o y~V(~o) • (8d) 

F rom this relation, Luzzat i  (1952) has derived the  
value of R = • [Fo[-IFcll +ZIFcI. The relat ionship 
between the ~o-distribution and the (~ ) -d i s t r i bu t ion  

/ i \11 \ 
,, 

- ¢  0 y + ¢  + 2 ¢  
% and ~P > 

Fig .  7. R e l a t i o n s h i p  b e t w e e n  t h e  p r o b a b i l i t y  d i s t r i b u t i o n s  fo r  
9~o a n d  (5~ ---- q)o--epc; t h e  v e r t i c a l  scale  f o r  ( ~  is 7~- t i m e s  
t h a t  f o r  ~0o. 

with ~o between y and y+dy,  is seen in Fig. 7. (The 
~ - d i s t r i b u t i o n  is easily seen to be consistent with the  
overall  dis t r ibut ion for ]~FI used in § 4.) The prob- 
abi l i ty  dis t r ibut ion of the  second te rm in equat ion (8d) 
is Gaussian by  the  central- l imit  theorem. 

Since the  values of ~v (especially in a two- or three- 
dimensional  summation)  are dis t r ibuted approximate ly  
in a Gaussian fashion (cf. Appendix  2), explicit  ex- 
pressions for the  ? ' s  are readi ly  obtained.  

We pu t  i~v) 2 = u 2, and ~v =/~ ,  the  averaging being 
over the  reflexions in a small range of h, k, 1. Then 
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~'z = 2 sin ~ ½6v = 1 -  cos/z = 

I (1-cos,u) [-#~/2uS]dlx exp [-#S/2uS]d/, 
o 

7A 2 U 4 7£ 6 
-- +~- -~ .  - . . .  = 1 - e x p  [-½u~]. (9a) 

2 .1 !  2s.2! .3t 

Now, 

~,~ = (2 sin ~ ½~v-Tx)S+sin ~ ~v 

= 4 sin~ ½#+~,~-27x.2 sin ~- ½#+sin s # 

= 4 sin a ½/x + sin ~ # -  ~ 

= 2 ( 1 - c o s / , ) - ? ~  = 1 - ( 1 - ~ )  s 

= 1 - e x p  [ - u  ~] . (9b) 

The full curve of Fig. 7, representing the 9o- 
distribution, has for its equation 

P( ~o, Cpo + d~o) = exp [-q~o~/2a ~] dc?o / 
+oo 

1_2  #o 
The equation of the O9-distribution (broken line) with 
9o between + y  and +(y+dy)  will then be 

P(~0, ~ + d ( ~ q ) )  = exp [-((~cp-~,ly)~/2~,~aS]d(&p)/ 
+¢o 

f_ooexp [ -  ( ~cP- TzY)~ /2?~aS]d( &f ) . 

I t  follows tha t  the fraction of the ~q's that  are greater 
than y is (el. shaded area in Fig. 7) 

= 

oo /S+oo 
= I 1-~'~ exp [ -  x s] dx [ - x s] dx 

gS.~,~a y - e x p  

g2.  ya 

where 
r = ? ~ / ( 1 - r D  = (exp [uS] -1)½. (9c) 

This fraction of the qo's between + y  and +(y+dy) 
will have their signs changed; the qo'S between +y  
and +(y+dy)  form a fraction dv/q~= l~/(2~r) exp 
[-y~[2a~]dy of the total number of ~p's under con- 
sideration; thus 

flhkZ = I v2dv2~ 

- exp [ -y~ /2~]dy  v exp [-x~]dx 
V2.~a o ,,~..~,~ 

= - -  e~p [--)~stg] exp [ -xS]dxd t .  
~1: o t 

(t = y/l/2. Ta) 

These integrals depend only on y, and therefore on u; 
and u is a function of h, k, l, only through the Bragg 
angle, 0 (of. Appendix 2 below), flhk~ can therefore 
be written as rio, and integrating by parts, we obtain 

t 

(' ) +2~,~_u l °°0 exp [ - t ' ]  I0exp [-~,'t~]dt dt 

~ -2 -3+25 .2!  2 7 .3~  + ' ' "  
1" 

= - tan -1 ~,. (10a) 
21: 

The series is convergent in the domain 0 N ~' < 1, 
but the result holds for all real ~, by the principle of 
analytical continuation. Combining (10a) with (9c), 
we finally get 

~o = l t a n - 1  1/(exp lugl--l) . (10b) 
7~ 

Curves for u/~, against u, and 2/50 against u are plotted 
in Fig. 8. By expanding/50 in powers of u, we get  

u (  u ~ u ' ~  
/5o ~" ~ 1-1-2+-~-0]'  (lOc) 

1"0 

0.8 

0"6 

0'4 

0"2 

0 

- -  - -  u/r 

o i i 
tJ ) 

F i g .  8. u/? ,  a n d  2/if0 a s  f u n c t i o n s  o f  u .  

where the last term has been increased by a factor 
of 3/2; this approximation is correct to within 0"001 
for u _~ 2, and is useful in calculating the integrals 
for ~ ,  etc., the integral from 2 to U (>  2) being small 
and easily obtained numerically. 

A P P E N D I X  2 

Validity of the approximations 
The simplifying assumptions and approximations 
made in the foregoing analysis are discussed briefly: 

(a) I t  has been assumed that  the (~v/s for the 
reflexions in a small range of h, k, 1 have a normal 
Gaussian distribution. For a one-dimensional sum- 
mation, 5vj = 2~(h/a)(~x# Now, there is a definite 
probability distribution of each 6xj, giving the 
probabihty that  a particular ~x~ lies within specified 
limits; a number of plausible distributions are shown 
in Fig. 9(a). The Gaussian curve is 'reasonable', ex- 
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cept tha t  it  is not  truncated, and is in any case a close 
enough approximation to the others; this lat ter  is 
strikingly brought out in Fig. 9(b) by the curves of 
+2flo against u for the distributions of Fig. 9(a). 

1'2 
1"0 
0'8 
0"6 

~ 0"~ 

0"2 

f 
F 

° ~ °  ~ . . . _ .  ° ~ ,  

. . . .  Square 
Triangular 

x ~ ~ \ , ,  Gaussian.~ 

% 
. , i .  ~ 

-2(r -o- +o" +2o" ~v~ 

/ ~ ~ u a r e  
/ Triangular 

- Gauss,an 

1 2 

(b) 

Fig. 9. (a) Some plausible probability distributions for ~v i. 
(b) The corresponding curves for 2tff 0 against u, 

For a two- dimensional summation,  (~vj = 
2~((h/a),~xi+(k/b)Syi},  so that ,  for a symmetrical  
summation over positive and negative h, k, 

For  a large number  of dx's and dy's, the r.m.s, errors 
in the x- and g-coordinates will be equal, i.e. (dx) ~ = 
(dy) 2 -- A ~. Thus 

(dv) ~=  4n ~ A + A = 4~2A21d~hko, 

whence 

u = ]/((Sv) 2) = 2zA/dhko = (4z/~)A sin 0 ,  (11) 

and is a function of h, k, through the Bragg angle, 0. 
In  this case the probabil i ty  distribution of the (~vi's 
is smoothed out and approaches the Gaussian form 
more nearly" because of the addition of the two sym- 
metrical distributions of (h/a)Sxj and (k/b),~yl. 

Similar considerations apply to the three-dimensional 
case. 

(b) The val idi ty of the tacit  assumption made in 
deriving equations (5), tha t  there is no correlation 
between the ~v's and the v's, is fairly evident. 

(c) When deriving equations (5) it was also assumed 
tha t  there is no correlation between the value of 

sin ~ vic and the correctness or otherwise of the signs 
of F given by the assumed structure. Now, 

2" -- 2f  Z N~- cos v/,  
i=1 

in which vi enters in one of the n terms, and 

n 

&F -- - 4 f  fl_: hrj sin ½(V]o+ vjc) sin ½(~vio , 
i=1 

which involves all the v/s and 5vj's. Thus, for large 
n and small F ' s  (which are the most likely to be given 
wrong signs), sin s v~ is not  appreciably correlated, 
either with 2' or with ~F. 

(d) In  equation (5b), the quant i ty  Aft was inserted 
to cover the statistical fluctuations. These are: (1) 

fluctuations of sin 2 v~¢ about its mean value for the 
group of reflexions, and (2) fluctuations of fl about its 
mean value as given by equations (10). I t  is easily seen 
that ,  if there are N 1 reflexions in the group, we can 
write 

(NjI/~) ~ ___~ (½~_hrl+~/V1) -- 1.5Nzfl. 

Summing up over all the N reflexions, we have 

whence 
(NAIl)2 N 1.5Nil,  

A~ -- 2V((Afl)2 ) ~ 2~/(1.5fl/N) 

_ ~ V(a(1-v)pv) 
which is small for the useful values of ~ and hr(,-~ 100). 
We can estimate the fraction (8) of the total  number of 
corrections tha t  are in the wrong direction. With  
N = 300, and a .Ganssian distribution of A~, we get 

~" 1.0 0.5 0.2 -0.15 0.10 0.05 
2s" 0 0.00 0.04 0-12 0.30 0.61 

I t  is also possible to find the limiting condition 
necessary to keep s small, say less than 0.15. This gives 

For  a two-dimensional summation with h o and 
k o ,'~ 1, uo /U N (ho_½) /H ~__ 1/]/N, (where u 0 and U are 
the minimum and maximum values of u in the sum- 
mation) and therefore 

~ = ~ / ( ~ )  ~ 1"45 ( ~ )  • 

From the two-dimensional curves corresponding to 
Fig. 1, the limiting values (with U/u o > 1) are: 

= 3: u 0 _~ 0.35, and N _~ (U/uo) 2 is not  limited. 
= 4: u o ~ 0.35(U/uo) 1/4, so tha t  ff u 0 < 0.35, N __~ 
(U/uo) 2 is not  limited. 

For  U/u o ,~ 10, these limits are much the same as 
the corresponding radii of rapid convergence (cf. § 5) 
for two-dimensions. I t  is interesting tha t  N is not 
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limited when v = 3 or 4. This occurs because the rate 
of decrease of U with increasing U is equal to or less 
than tha t  of A U, and it confirms the suitability of these 
indices. 
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The X - r a y  scat tering pa t te rns  of several cubic arrays  of points a r ranged on a body-centered  cubic 
lattice have been computed according to the Debye scattering formula, I = ~ ~ (sin rqs)/rijs 

i 1 
and plotted as a function of t = as, where a is the unit translation of the lattice. 

The dependence upon the scattering angle of X-ray 
intensity scattered from an assemblage of crystals in 
the Debye-Scherrer arrangement may  be described in 
terms of Bragg's Law; or alternatively in terms of the 
Debye scattering formula 

sin r~js 
l ( s )=2 ' i ' ~ f i f '  ~ " 

where s = (4~/2) sin ½0. When the discrete crystallites 
making up the assemblage are large (of the order of 
tens of thousands of unit  cells or more), these two 
relations give identical positions of maximum in- 
tensity. As the crystallites become smaller, the familiar 
line-broadening effect appears. In  addition to the 
actual broadening of the powder lines, this effect in- 
eludes also a loss of resolution between adjacent lines, 
coalescence of adjacent lines, and disappearance of 
both the weaker lines and the lines occurring at high 0. 
Numerous investigations into the relation between 
~m0unt 0f pe&k-br0adening ~nd size of crystnllite hnve 
been published. The companion questions: of minimum 
crystallite size for the appearance of a given (weak) 
line; of minimum crystallite size for the resolution of 
two or more adjacent lines; of the size below which 
the finer details of the pat tern  are absorbed into the 
background scattering; and of the preferential sup- 
pression of diffraction detail as the crystallites are 
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asymmetrically reduced in size or the preferential 
appearance of characteristic lines as the crystallites 
are enlarged in preferred directions: have been more 
neglected. 

Probably the conceptually most satisfactory answer 
to these questions is obtained by  actual calculation 
of the scattering patterns characteristic of crystalline 
assemblages of appropriate dimensions. I t  is then 
possible to inspect plots of the Debye scattering func- 
tion for a series of crystallite sizes and shapes, and to 
form a coherent and detailed mental  picture of the 
gradual transition from the diffuse and characterless 
haloes of the patterns from very t iny crystallites to the 
family of discrete lines characteristic of indefinitely 
large crystallites. The availability of high-speed com- 
puting machines makes the task of numerical evalua- 
tion of the Debye scattering function rather less 
formidable than it once was, even for relatively large 
crystallites. 

The present eommunlcatlon presents the results of 
such calculations for the case of body-centered cubic 
homoatomic crystallites, cubic in shape, and ranging 
from one unit cell (nine atoms) to a cube of 1000 unit  
cells (2331 atoms). Plots of this kind have already 
been published by Germer & White (1941) and by 
James (1948). The results of Germer & White cover 
the case of face-centered cubic assemblages. Their 
calculations were spaced at considerably larger inter- 
vals than in the present paper, however, with the 
result tha t  the background is not well-delineated; and 


